Testosterone stimulates mounting behavior and arginine vasotocin expression in the brain of both sexual and unisexual whiptail lizards.

نویسندگان

  • K D Hillsman
  • N S Sanderson
  • D Crews
چکیده

In nonmammalian vertebrates the abundance of arginine vasotocin (AVT) neurons in the brain is sexually dimorphic, a pattern that is modulated by testicular androgen. This peptide is thought to be involved in the control of male-typical mounting behaviors. The all-female desert-grasslands whiptail (Cnemidophorus uniparens) reproduces by obligate parthenogenesis and in nature no males exist, but eggs treated with aromatase inhibitor hatch into individuals (called virago C. uniparens) having testes, accessory sex structures, high circulating concentrations of androgens, and exhibiting only male-like copulatory behavior. To examine the 'sexual' dimorphism of AVT-containing neurons in these animals, we compared AVT immunoreactivity in gonadectomized control and virago C. uniparens, with that of gonadectomized male and female Cnemidophorus inornatus, a sexual species that is the maternal ancestor to the parthenogenetic species. Mounting behavior is elicited in both species and both sexes by testosterone, and it was predicted that the distribution and abundance of AVT cell bodies and fibers would reflect the propensity of males and females of the two species to display male-typical copulatory behavior. Since both this propensity and AVT abundance are controlled by androgens, we compared testosterone-implanted and control animals within each group. Testosterone treatment generally increased AVT abundance, except in lab-reared parthenoforms, in which testosterone treatment was the least effective in inducing male-like copulatory behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of pseudosexual behavior in the parthenogenetic whiptail lizard, Cnemidophorus uniparens.

Neuroendocrine mechanisms underlying complementary behaviors like male-typical mounting and female-typical receptivity are most often studied independently in males and females, respectively. Cnemidophorus uniparens is a unisexual lizard species consisting only of females that alternately express male- and female-like pseudosexual behavior across the ovarian cycle. Intact, postovulatory (PostOv...

متن کامل

Serotonergic modulation of male-like pseudocopulatory behavior in the parthenogenetic whiptail lizard, Cnemidophorus uniparens.

Hormone-neurotransmitter interactions form an important link through which hormones influence a variety of behavioral processes. Typically, sexual behavior is dimorphic with males mounting receptive females. In the all-female lizard species Cnemidophorus uniparens, individuals display both male-like pseudocopulation and female-like receptivity. These respective behavioral states are correlated ...

متن کامل

Differential effects of testosterone and progesterone on the activation and retention of courtship behavior in sexual and parthenogenetic whiptail lizards.

Both testosterone (T) and progesterone (P) facilitate the expression of male-typical sexual behavior in a variety of animals, including rodents and lizards. In two species of whiptail lizards, Cnemidophorus inornatus and C. uniparens, both hormones elicit the full repertoire of courtship behavior. However, the relative efficacy of the two hormones is unknown. In Experiments 1 and 2 we assessed ...

متن کامل

The nitric oxide synthase inhibitor L-NAME suppresses androgen-induced male-like pseudocopulatory behavior in whiptail lizards.

The synthesis of nitric oxide by the enzyme nitric oxide synthase (NOS) is involved in the androgen-dependent gating of male-typical copulatory behavior, both centrally, particularly in the preoptic area, and peripherally, notably through its role in penile erection. In the all-female whiptail lizard species Cnemidophorus uniparens, individuals display copulatory behaviors indistinguishable fro...

متن کامل

Species differences in the regulation of tyrosine hydroxylase in Cnemidophorus whiptail lizards.

Evolution of behavioral phenotype involves changes in the underlying neural substrates. Cnemidophorus whiptail lizards enable the study of behavioral and neural evolution because ancestral species involved in producing unisexual, hybrid species still exist. Catecholaminergic systems modulate the expression of social behaviors in a number of vertebrates, including whiptails, and therefore we inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Sexual development : genetics, molecular biology, evolution, endocrinology, embryology, and pathology of sex determination and differentiation

دوره 1 1  شماره 

صفحات  -

تاریخ انتشار 2007